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Abstract: Least squares {LS) estimation and maximum likelihood (ML) estimation are considered for upit
root processes with GARCH(L,1) errors. The asymptotic distributions of LS and ML estimators are given under
the second moment conditicn. The former has the usual unit root distribution and the latter is a functional of a
bivariate Brownian motion, as in Ling and Li [1998]. Several unit root tests based on the LS estimator and on
mixing LS and ML estimators are constructed. Simulation results show that tests based on mixing LS and ML
estimators perform better than Dickey-Fulier tests based on LS estimators.

1. INTRODUCTION

Consider two unit root processes,

¥r zq)yr—i —E—E! (li)
Y =R Oy, +E, (1.2)

where o=1, pn=0, g follows the first-order
generalized autoregressive conditional
heteroscedasticity GARCH(I, 1} model givea by

g, =M,JA, . h, =w+ogl, +Bh (1.3)
where @ >0, ot 20, B = 0, and the 7, are a sequence
of independently and identically distributed (i.i.d.)
random variables with zero mean and unit variance.
For model (1.3} we make the following
assumptions:

Assumption I. w+B=1.
Assemption 2, The

d= (o) e ©  where
oLosl-q, mﬁsﬁslwﬁ, forsome&,5>0}.
Assumpiion 3. ¥, has a symmetric distribution

parameter vector
8 ={(o, o Bilw> 0,

and Fn} <o

The GARCH medel was proposed by Bollerslev
[1986] and bas had many important applications in
financial and econometric time series, Some recent
reviews can be found in Bollersley et al. [1992],
Bollerslev et al. [1994] and L: et al. [1999]. When
o= =1, the g defined by model (1.3) reduce to
i.i.d, white noise and, for this case, the unit root
process has been investigated extensively.
Motivated by practical applications, in recent

decades many statisticians and econometricians
have considered various unit root processes with
non-il.d. errors. Some related results on estimating
and testing unit roots can be found in Phillips and
Durlauf [1986], Phillips [[9871, Chan and Wei
[1988}, Lucas [1995], and Herce [1996], and the
references cited therein. When the error term
follows a GARCH process, estimation and testing
for a unit root involves intrinsic problems, an issue
that was first raised by Pantula [1989]. He derived
the asymptotic distribution of least sguares (LS)
estimators for a unit root process with a first-order
ARCH error (Le. modet (1.3) with B=), and
showed that Dickey-Fuller tests could still be
employed in this case. Pantula {1986, p. 73] also
stated without proof that Dickey-Fuller tests could
be used for unit root processes with GARCH errors.

Peters and Veloce [1988] and Kim and Schmidt
[1993] provided simulation results to show that
Dickey-Fuller tests based on LS estimators are
often sensitive and, when ¢+ [} is close to 1, the
problem can be very sericus. It seems that this
phenomenon can be explained partly by the oss of
sfficiency of the LS estimator. Ling and Li [1998]
derived the iimiting distribution of the maximum
likefihood (ML) estimator for a general
nonstationary autoregressive moving average time
series process with general-order GARCH errors,
and demonstrated that it is more efficient than the
LS estimator. As for stationary time series with
GARCH errors [see Weiss, 1986, and Ling and Li,
1997a), Ling and Li’s [1998] results are obtained
under the assumption that the fourth moment is
finite, However, for the GARCH(L,D) process,
the condition for strict  stationarity s
E(in(u‘qf’ +B))< 0 Isee Nelson, 1990], the
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condition for a finite variance is o+ <1, and
the condition for a finite fourth moment is
307 + 20 + B < 1. The fourth moment condition is
clearly the most stringent.

For the pure GARCH(L,1) model, Lee and Hansen
[1994] and Lumsdaine [1996] proved that ML
estimators are consistent and asymptotically normal
under the condition that E{n(em? +B))<0. A
challenging problem is whether the limiting
distribution of ML estimators can be derived under

weaker conditions for the unit roct process with
GARCH errors.

Ling and Li [1997b] obtained the asymptotic
distribution of the ML estimators for models (1.1}
and {1.2) under Assumptions 1-3. The limiting
distribution of the estimated unit root is a fuactional
of a bivariate Brownian motion and is the same as
that obtained in Ling and Li [1998]. Based on these
asymptotic results, we can construct several new
unit root tests. Simulation results reported in the
paper show that tests based on mixing LS and ML
estimators perform better than those based on LS
estimators alone.

This paper proceeds as follows. Section 2 presents
L.S estimation and its asymptotic properties. Section
3 considers ML estimation and its asymptotic
properties. Section 4 reports some unit Toat tests,
Section 3 presents some simulation results. The
proofs of all theorems can be found in Ling et al.
[1999].

Throughout the paper, we use the following
notation. IJ” denotes the transpose of the vector I/
e{1) (0,(1)) denotes a series of numbers (random
numbers) converging to zero (in probability); O(1)
(0,(1)y denotes a series of numbers (random
numbers) that are bounded (in probability); —%—

and ———s denote convergence in probabifity and in
distribution, respectively, D =D[0,1] denotes the
space of functions {s) on [0,1], which is defined
and equipped with the Skorokhod topology
[Billingsley, 1968]; |-l denotes the Euclidean

norm.
2. PRELIMINARY ESTIMATION

Consider the cbservations y, ..., ¥, with initial
value yy = 0, generated by model (1.1} or (1.2).

Denote &) ;5 as the LS estimator of ¢ in model {1.1)

and {ﬂLg,5LS) as the LS estimator of (i, ¢} In
model (1.2). Then

{rg = (2}’?~1T1(E}’r)’r—l) (Z.1)

B, ol () e

s
o % e + R
where 2, denotes Yt

Theorem 2.1. Suppose that Assumptions 1-3 hold.
Then

. [Bwds @
[Blwar

P
q}LSm'l_

1 | By (i )'{ B, (1)

{3,y [ B (.f)de [ Bioas, ) |

(a) n@}m —1}

where Nn:diag(\/;,n), Bi(ry is a standard

. ) i
Brownian motion, and } denotes J‘G.

Let ét =y “(pls.yr—i or “BLS _G)LS Y- Then
(8;,€,,....8,} is a sequence of artificial
observations from model (1.3). Denocte

2

1 £
I 18)=——=1In iy, wiom 2.3
)= inn -5 23)
L& )= -~k ¢ 24
A A (2.4)
2 2h,
where fi, = w+of] +Bh,_,, with =1 and
S=(w o p).

The first-order conditions seek the supremum of
5 e 8. Suppose that 8 is the true value of e ©

and let
5)} .

The following shows the asymptotic properties of

-~

!

3 1 .
Sr: =arg Iggg!:; 2 [{ (EI

"

Theorem 2.2. - Under Assumptions [-3:

(a) 8, -8, —L—0

) Jn(, —8,)—=— N(O,V,)

where V, is given in Ling et al. {1999].
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Remark. From Theorems 2.1 and 2.2, ¢ or (11,0}
and & «can be estimated separately, with

O —0=00") . (fpy,005) -1 0) = 0N,
and -8, =0(n 7). However, under GARCH

errors, the LS estimator of ¢ or (1,0} loses some
efficiency (see the next section) and hence, for
finite samples, this will result in a loss of efficiency
for the ML esumator of 8 A more efficient
estimation procedure will be shown in the next
section, so that all the estimators in this section can
be viewed as preliminary estimators.

3. ML ESTIMATION

To simplify notation, in this section the true
parameler 8 is denoted as & Let A=1{$,87,

Ay = {0,787 and ¢y = (11,0). The ML estimators of

A and A, are denoted by A=(d,, d;,) and
/?',u = (‘?b;;.vff.. : 5;:.;\-11_ 1.
5“_m:(ﬁﬂ,”_,@ﬂ,m)', that maximise the log-
likelihood

respectively, with

L=-Y, (3.1
#

where [, is defined as in (2.3). The following
theorem gives the asymptotic properties of the
information matrix.

Theorem 3.1. Under Assumptions 1-3:

I
a) e 3y ey S ()
( n'zagb‘ j j
041
b N LN
aCI)“a@“

-

A [y |
[ e [wlir J

a°1,

l
o I ks (31
© 5 > 595

(@ (n'fw,,)”i‘a%%—“‘“
1

I O, N
o f i3 —E r ,
© Za&aa' {a&ag'}

whera w(f) is a Brownian motion with covariance
e N - .
ic”, N, is defined in Theorem 2.1, and

F=E(/h)+202 3 fEGER, [h]).

Since the likelihood equations 8L/8A =0 and
81,/8h, = 0 are nonfinear in & and A,, respectively,
an iterative numerical procedure is required to
obtaia the solutions to these equations. By Theorem

3.1, ¢ (or ¢,) and & can be estimated separately
without loss of efficiency. Thus, we can define an
algorithm by the terative approximate Newton-

Raphson relation for ¢, and &, .

Similarly, define a scheme for 43;[_,,”‘ and ‘i,mx As
in the argument of Yap and Reinsel [1995}, the
estimators of A and A, obtained by the Newton-
Raphson relation will be consistent it the initial
gstimators are consisteat. By Theorem 2.1 and 2.2
in Section 2, we can obtain the initial estimator of A

(or A, such  that  g-¢=0,(n""y  (or
9, -0, =0, (N")yand 6 =8=0 (n""). With
these consistant initial estimators, we can obtain the
asymptotic representations of {f}M[_ and b:‘,,,”l by
standard arguments. The asymptotic representations
of  a(@, ., —@) and «/E(é‘ﬂ_m -d)y can he
obtained analogously. The following theorem gives
the asymptotic distributions of (@,,.87Y and
(¢11,ML’5ML} ’

Theorem 3.2. Lel ($,,.0) and (5;‘_1‘“_,5;_“)'

be the estimators of (9,87 and ($,".8")" obtained
from the Newton-Raphson relation by using intuial

estimators 135 or (,5.[, and &, with ,aﬁmgj:cv,, (n™h
or r;i;ﬂ ~p, =0, (N;") and & ~d=0,(n"),

respectively. Then, under Assumptions 1-3:

. J.wi (1w, (1)
Fjwf(r)df

& N - Mo L
(Dp.ML -1
[ J.w[ ()t N wo (1)
j w {0t jwf (Hyddr J j w, (Ddw, ()

(a) n(&)m -1

~1

where &, is defined in Theorem 2.1, and
(wy().wa{r}) 18 a bivariate Brownian motion with

covariance £}, K= Enf —1| and, whea 1, is normal,
x=2. For Jn(8,, —8) and Jrz‘(gﬂ_m —~ &), their

asymptotic distributions are the same as those given
in Theorem 2.2(h).

Remark., The asymptotic distributions of (E}ML and
&;i,ML can be vtepresented, respectively, as

combinations of those of ¢, and ¢, ;¢ and a scale

mixiure of normais. These properties are similar to
hose of the least absolute deviation estimators of
unit roots given in Herce {1996}, The ML estimator
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of ¢ or ¢, is more efficient than the LS estimator
given in the previcus section [see Ling and Li,
19937,

4, UNIT ROOT TESTS

Based on the asymptotic results in Sections 2 and 3,
we can report seme pew unit root fests for the
nonstationary models (1.1} and (1.2) with GARCH
error {1.3). First, we define the test statistics, Ly, L,
Ly and L, based on LS estimators, as given in
Ling et al. [1999]. The limiting distributions of the
LS-based tests are the same as those given in
Dickey and Fuller {1979]. The critical values of
these distributions can be found in Tables 8.5.2 and
8.5.3 of Fuller {1976].

In order to apply ML estimators for unit root tests,
we need to modify H{®,, — 1} and rz((ﬂf)wﬂ - in
Theorem 3.2 because these limiting distributons
depend on nuisance parameters. These nuisance
parameters should be replaced by consistent
estimators, an approach that was first used by
Phillips {1987]. Recently, a similar approach was
empioyed by Lucas [1995] and Herce [1996]. We
can define new test statistics by mixing LS and ML
estimators to yield My, M, M, , and M, as given in
Ling et al. [1999].

We call these new test statistics ML-based tests.
The limiting distributions of the ML-based tests are
the same as those based on the least absolute
deviations estimators of Herce [1996]. However,
the test statistics themselves are quite different. The
empirical critical values of these distributions witl
be given in the next section. When a=10, k, is a
constant, and hence o' =1. In this case,
Assumption 2 is violated and the above tests cannot
be used. Therefore, it s necessary to check whether
or not the coefficient o is equal to zero betfore
deciding to employ the ML-based test statistics.
This can be done easily by applying the diagnostic
checking method in Li and Mark [[994] for the
pure GARCH model (1.3), with the artificial
observations, £, in Section 2.

5. SIMULATION STUDY

In this section, we obtain some critical values of the
Mi.-based tests, and report the empirical sizes and
powers of the new test statistics in Section 4,

The finite sample distributions of the ML-based
tests are obtained by simulation. First, we generate
a series of GARCH(1,1) processes [g,}, where
g, =M, . h =01+03e} +06h_,  and

T~ 11.0.V(0, 13, and use the series {g}, to generate
the unit Foot process:

Yi=¥m tEy t=1, .., 5,

with yy = 0. Then the ML estimators of (§,0.0.5)
and (1,400,023} can be obtained by the estimation
procedures in Section 3. Finally, we compute the
values of the ML-based test statistics. Such a
procedure is repeated for 20,000 independent
replications. Using the 20,000 simulated values, the
empirical guantiles of the distributions of the ML-
based tests are estimated. For n =200, 300 and
5000, some of the empirical quantiles are
sumnmarised in Table | When # = 200 aad 300, the
critical values are generally smaller than those
given in Herce [1996], The differences are
understandabie since the finite sample distributions
depend on the test statistics themselves, the
distribution of errors and the estimation methods,
ali of which are different from those in Herce
[1996]. When #n = 3000, the critical values of M,
and M, are almost the same as those in Herce
[1996], and for M, and M, their critical values are
very close to those of the standard normal
distribution.

In order to investigate the empirical sizes and
powers of the fest statistics in Section 4, we
generate data sets from the tollowing model:

yr=dy g+ £, £, =T, 40k, ,

hy=w+oel, +Bh,_,, T~ Li.dNO.,
with ¢=09085099 10, w=1-0-8, and
(00, = (0.2,0.7), (0.3,0.6) and (0.4.0.5). Each data
set is estimated by model (1.1) with GARCH error
{13} and model! (1.2} with GARCH error (1.3). For
model {!.1) with GARCH error (1.3), we first
estimate § by LS and then obtain a series of
artificial cbservations of g which are used to
estimate  (wef) by the IMSL  subroutine
DBCOAH. Using these estimators as the initial
values, we obtain the ML estimator of {¢,m,0,[3) by
the estimation procedure given in Section 3. A
sirnilar estimation procedure is empioyed for model
{1.2) with GARCH error (1.3). For each parameter
vector (0,008 and  (ug.ouf), we use 1000
independent replications. The empirical sizes and
powers of the eight test statistics, Lg, L, Lyg. Ly,
My, My, M4 and M, ,, are summarised in Table 2 for
n= 200 for the 5% significance level. Results are
also available for s = 300, but are not reported in
tabular form.

When n = 200, the empirical sizes of the LS-based
tests, especially 7, and L, ,, tend to overrgject a true
null hypothesis. For the ML-based tests, the sizes
are closer to the nominal 5% level, and powers are
also acceptable as compared with those reported in
other studies ander i.i.d. errors {(see, for example,
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Dickey and Fuller [1978]). When » =300 {(not
reported here), all the test statistics for the fitted
model (1.1) with GARCH error (1.3) have similar
sizes and powers. However, for the fitted model
{(1.2) with GARCH error {(1.3), the LS-based tests
stili tend to overreject, which is consistent with the
findings in Kim and Schmidt [1993]. In this case,
the ML-based tests basically sotve the overrejection
problem. From Table 2 and the resulis for n = 300
(not reported here}, we see that when o increases,
the LS-based tests became more sensitive, with
increasing sizes and decreasing powers. This
phenomenon can be explained by the fact that,
when o increases, the values of y, from the unit root
process have increasingly heavy-tailed innovations.
Meanwhile, when o increases, the power of the
ME-based tests wnproves becaunse, in this case,
&7k —1 (or &% -1) in the MI-based tests can be
evaluated more accurately, Al of these resuits
suggest clearly that the MI-based tests are more
robust and perform better than their LS-based
counterparts.
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TABLE 1
Empirical Critical Values for the M, M, M, , and #, , Tests

Empirical Quantiles

Statistic 7 010 {25 050 100 900 850 075 9499
M, 200 -9.78 -6.71 -4.77 -3.09 2.42 343 4.40 5.39
300 -8.96 -6.17 -4.36 -2.92 2.4 3.49 32 5.87

5000 -6.53 -4.98 -3.68 ~2.60 2.56 3.73 5.01 6.70

M, 200 -2.37 -2.00 -1.66 -1.28 1.20 1.56 1.90 2.27
300 -2.39 -1.98 -1.64 -1.28 1.24 1.60 1.1 2.28

50060 -2.31 -1.96 -1.64 -1.28 1.24 1.60 1.92 2.31

Mo 200 -16.41 -11.93 -9.03 -6.25 2.96 4.20 5.30 6.83
300 -153.04 -11.08 -8.43 =573 312 436 5.56 7.00

5000 -8.79 -6.90 -5.44 -3.95 3.86 531 6.69 8.74

My, 200 -3.54 -2.88 -2.33 -1.81 1.05 1.42 1.75 2.18
300 -3.38 -2.69 -2.22 -1.70 110 1.46 180 2.24

5000 -2.31 -1.85 -1.67 -1.28 1.28 1.64 1.94 231

TABLE 2
Sizes and Powers for Unit Root Processes with GARCH(1,1) Errors
7 = 200, 1006 Replications, v =1 -0~
¢

o 3 Test 0.90 095 0.99 10 Test (.90 (.95 .99 1.G
0.2 0.7 Ly 996 848 132 064 Ly B0t 466 04 064
Ly 894 147 129 63 L 830 325 073 066
My 799 556 133 061 Moy 648 335 064 037

M, 460 283 132 037 My, 356 213 070 041
6.3 0.6 Ly 992 739 134 074 Lo 392 470 L3 077
L 987 743 135 069 Loy 819 328 083 079
M, 890 100 168 0355 My 786 783 .08 058
M, 626 470 470 057 My, 543 330 097 049
0.4 0.5 Ly 986 37 138 73 Lyg 291 ART A22 083
L, 981 743 i44 070 Ly B0 355 093 084
M, 934 N 21 (048 Mg 863 578 ALt 063
M, 741 528 212 049 My, 653 440 A1g 059
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